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Abstract. Transverse vibrations of a single-span girder bridge are 
considered in the article; the pile part of the bridge interacts with the 
surrounding soil under seismic action. We assume that the strain of the 
structure does not go beyond the elastic limit, and the vibrations are linear. 
The bridge supports are assumed to be immersed in soil and interact with a 
rigid body under the impact of unsteady dynamic influences. We consider 
the case when the right and left supports have equal masses and interact 
with the surrounding soil. Here the symmetry condition is applied, so it is 
sufficient to consider the equation for the right half of the girder. The 
problems are solved by the analytical Fourier method under given 
boundary conditions. The results obtained are analyzed and presented in 
the form of the distribution of displacements and stresses over the time and 
length of the bridge structures. 

1 Introduction 

Various transport structures, including bridge structures, are of great importance worldwide 
for expanding trunk road networks, increasing the volume of passenger and cargo traffic, 
and developing the infrastructure of large cities. Bridge structures, being one of the types of 
construction objects, have specific consumer properties that determine their purpose and 
quality. 

Most of the territory of Uzbekistan is in unfavorable conditions in terms of bridge 
supports operation. The aggressive impact of the environment and reagents used in the 
bridge structure operation adversely affect the technical condition and durability of bridge 
supports on highways. 

The most important feature of the road industry is its high social and economic 
significance; the quality of life of all segments of the population and the development of the 
economy as a whole depend on the effective functioning of this system. 

Over the years of independence, large-scale work has been conducted in the republic to 
develop road transport infrastructure, ensuring safe interstate transportation and extensive 
transport links between the administrative centers of regions and districts [1]. 
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Most of the basic structures in modern capital construction are made of various types of 
reinforced concrete. It is especially important to accelerate scientific and technological 
progress in this area at such a gigantic pace in construction. To solve this problem, it is 
necessary, first, to further develop the methods for calculating and designing reinforced 
concrete structures by improving the elements of the general theory of strength and 
deformability of concrete and reinforced concrete, based on their real properties and 
performance under various operational and seismic (strong and weak) impacts including the 
states close to destruction. 

Analysis of data on seismic damage showed that the impact of earthquakes of 
magnitude 7-9 on roads built according to normal standards leads to substantial damage to 
structures and serious disruptions to traffic, up to a complete cessation of traffic for a period 
of several days to several weeks. The failure of bridges during a possible earthquake can 
lead not only to the costs of restoration or construction of a new structure. The lack of 
transport access in emergency cases may complicate the work of rescuers and may lead to 
increased loss of human lives due to the delayed response [1-3]. 

2 Methods 

Structure vibrations during the earthquakes induced by the oscillatory motion of the base 
are called seismic vibrations. Seismic vibrations of structures are of a very complex spatial 
nature. Under intense seismic impact, leading to damage, the strains in the structure go 
beyond the elastic limits, and vibrations, as a rule, are not linear. However, to simplify the 
problem, the normalized method for determining seismic forces based on linear theory 
allows independent consideration of three mutually perpendicular vibration components 
(vertical and horizontal ones). 

During earthquakes, the supports and spans of bridges dynamically interact with each 
other, and their complex reacts to the foundation motion as a single oscillatory system. 
Therefore, the main task of the theory of seismic vibrations of bridge structures is to study 
the joint vibrations of spans and supports caused by vibrations of the foundation. At 
present, this problem does not have a complete solution [2-11]. 

In the applied dynamics of structures, bridges are one of the main objects of research. 
However, these studies are mostly related to the dynamic effects of rolling stock and 
consider, as a rule, vertical (or spatial) vibrations of spans, regardless of the supports. The 
analysis of joint vibrations of these elements is rare [2], [12-15]. 

Bridge supports can experience both displacements across the bridge's axis caused by 
bending and shear strains of their structures and the foundation flexibility and torsional 
strains (section rotation in the horizontal plane). Obviously, torsional strains occur only in 
rare cases and are not significant [2]. 

Based on the above, in the study of seismic vibrations of girder bridges in the first 
approximation, we can limit ourselves to considering only the transverse strains of spans 
and supports. This is all the more acceptable since transverse strains play a determinant role 
in the formation of horizontal seismic forces. 

This article aims to study the transverse vibrations of a single-span girder bridge, the 
pile part of which interacts with the surrounding soil under seismic action Academician T. 
Rashidov has developed a dynamic theory of seismic resistance of complex systems of 
underground structures based on considering the difference in strains of a structure and soil 
[16-17]. Several scientists in our country and abroad have researched the problems of 
seismic resistance of underground and surface structures interacting with surrounding soil 
[18-23].  
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Fig. 1. Scheme of a single-span girder road bridge 

To assess the reliability and bearing capacity of road girder bridges on supports, in 
addition to the moving loads acting on the girder, we should take into account the forces 
transmitted through the girder supports related to the impact of, for example, seismic 
waves. Consider a road girder with two end supports (figure 1). As a first approximation, 
the bridge supports are assumed to be immersed in the ground and interacting with a rigid 
body under the influence of nonstationary dynamic influences. The origin of coordinates is 
set at point A, the Ox axis is directed along the neutral axis of the girder, and the axes Оу1 
(with the origin at point О1) are perpendicular to it (figure 2). Let a longitudinal wave flow 
around the supports, behind the front of which the soil particles' motion depends on the 
coordinate у1 and time t according to the law u0=u0(t–y1/c0). The presence of supports in the 
boundary sections of the girder leads to the emergence of concentrated forces, which can be 
taken into account through the discontinuities of the third derivative in the equation of 
motion. Under these assumptions, the girder deflection y=y(x,t) satisfies the following 
equation 

We set the origin at point A, direct the Ox axis along the neutral axis of the girder, and 
the Oy1 axes (with the origin at point O1) are perpendicular to it (figure 2) 
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where mB is the linear weight of the girder, E is the Young's modulus of the material of the 
girder, Jz is the moment of inertia of the section, l is the length of the girder, M1 and M2 are 
the weights of the left and right support, and k01 and k02 are the stiffness coefficients of the 
left and right support in soil. u0 is the soil particles' motion behind the front of the incident 
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Fig. 2. Design scheme of a road girder bridge with movable supports 

Consider the case when the right and left supports have equal weights and interact with 
the surrounding soil. We assume that M1=M2=M, k01=k02, and k02=k12, and using the 
symmetry condition, it is sufficient to consider the equation for the right half of the girder 
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 and to require the fulfillment of the symmetry condition in the middle section of the 

girder. 
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Assuming that Lx / , we introduce a new function by the following formula 
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The second condition in (6) can be reduced to a homogeneous form if the function A(t) 
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In this case, the equation of motion of the girder relative to ),( ty   is written in the 

following form 
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The solution of equation (10) under boundary conditions (7) – (9) can be obtained by 
the Fourier method, following which the solution of the homogeneous equation 
corresponding to (9) can be represented in the following form 
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The solution of equation (12) is presented in terms of the Krylov functions (Ci are 
arbitrary constants) 
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Equating the determinant of the system of equations to zero for C1 and C3, we derive an 

equation for determining the eigenvalues λ=λi 
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It can be shown that the Eigenfunctions φi=(ξ) satisfy the generalized orthogonality 
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Using the orthogonality condition (18), we compose an equation for the expansion 
coefficients 
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If the change in the displacement of soil particles behind the wave front is taken 

according to the law 
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3 Results and Discussion 

Figures 3, 4 show the curves of the dependence of deflection y (figure 3) and bending 

stresses /W2
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  (W – is the moment of resistance of the girder section) (figure 4) 

in different sections in time t (sec) for a girder of a rectangular cross-section of width b=0.3 

m and of height h=0.6 m under the action of wave 
vL

ytc
Uu 10

00 sin


 . 

The calculations were conducted for two wavelengths Lv and taken as U0=0.005 m, 
c0=1000 m/s, k01=1.7·105 N/m, k11=0.2k01, E=5·1010 Pа, L=25 m, М=2500 kg, 
mB=100 kg/m, H=8 m.  

Analysis of the graphs shows that the action of a harmonic wave on a girder through 
rigid supports leads to an oscillatory law of change in deflections and stresses in its 
sections. In this case, the maximum values of stresses are observed in the sections of the 

7

E3S Web of Conferences 264, 02038 (2021)	 https://doi.org/10.1051/e3sconf/202126402038
CONMECHYDRO - 2021



girder attached to the supports, and their values significantly decrease with distance. This 
indicates the possibility of the appearance of plastic strains near these sections, which is 
why the decrease in the quality of the operational parameters of the girder bridge. A 
decrease in the wavelength increases the frequencies and practically does not affect the 
amplitude of the girder deflections.  
 

Lv=100 m Lv=50 m 

  
Fig. 3. Change in deflection in different sections of the girder x(m) (referred to L) in time t (sec) for 
two values of wavelength Lv(m): 2.0/1  Lx , 3.0/2  Lx , 4.0/3  Lx , 

5.0/4  Lx , 7.0/5  Lx , 1/6  Lx  
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Fig. 4. Change in bending stresses σ (MPa) in different sections of the girder x(m) (referred to L) in 
time t (sec) for two values of wavelength Lv(m): 2.0/1  Lx , 3.0/2  Lx , 4.0/3  Lx , 
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Fig. 5. Change in deflection along the length of the girder x(m) (referred to the length of the girder L) 
for different values of time t (sec) and two wavelengths Lv(m):  ,02.01  t  ,04.02  t

,06.03  t ,08.04  t ,1.05  t 15.06  t  
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girder attached to the supports, and their values significantly decrease with distance. This 
indicates the possibility of the appearance of plastic strains near these sections, which is 
why the decrease in the quality of the operational parameters of the girder bridge. A 
decrease in the wavelength increases the frequencies and practically does not affect the 
amplitude of the girder deflections.  
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Fig. 5. Change in deflection along the length of the girder x(m) (referred to the length of the girder L) 
for different values of time t (sec) and two wavelengths Lv(m):  ,02.01  t  ,04.02  t

,06.03  t ,08.04  t ,1.05  t 15.06  t  
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Fig. 6. Change in bending stresses σ (MPa) along the length of the girder x(m) (referred to the length 
of the girder L) for different values of time t (sec) and two wavelengths Lv(m):  ,01.01  t  

,03.02  t  ,06.03  t  ,1.04  t  ,13.05  t  19.06  t  

Comparison of the graphs presented in figure 4 indicates that long waves, in addition to 
changing the frequency composition of the oscillatory process, lead to a significant increase 
in the maximum values of stresses near the section where the girder is attached to the 
supports. From the analysis of the graphs (Figures 4 and 5) of deflections and stresses 
distribution along the length of the girder, it follows that during a certain period of time, the 
deflections and stresses reach their maximum values, and such states may appear 
periodically, due to the absence of wave-absorbing elements in the girder bridge structure. 

4 Conclusions 

1. A method of dynamic calculation of a girder bridge for the effect of longitudinal waves 
on the supports of girder bridges was proposed. 
2. By calculation, the pattern of oscillatory processes in the girder sections was determined 
when the force effect is transferred to the girder bridge through the supports immersed in 
soil. 
3. The influence of the frequency and amplitude of acting harmonic waves on the dynamic 
characteristics of the girder vibrations was estimated. It was established that the increase in 
the longitudinal wavelength acting on supports has practically no effect on the amplitudes 
of the girder deflections; it leads to a change in the frequency composition of the oscillatory 
process and an increase in the amplitude of stresses induced by the bending moments near 
the connection sections of the girder and the supports. 
4. The reasons for the appearance of irreversible strains at the connections of bridges with 
supports, leading to a decrease in the quality indicators of the operational properties of 
bridges, were revealed. 
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